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Abstract
In this study, an extended version of variable parameter McCarthy–Muskingum (VPMM) method originally proposed by

Perumal and Price (J Hydrol 502:89–102, 2013) was compared with the widely used data-based model, namely support

vector machine (SVM) and hybrid wavelet-support vector machine (WASVM) to simulate the hourly discharge in Neckar

River wherein significant lateral flow contribution by intermediate catchment rainfall prevails during flood wave move-

ment. The discharge data from the year 1999 to 2002 have been used in this study. The extended VPMM method has been

used to simulate 9 flood events of the year 2002, and later the results were compared with SVM and WASVM models. The

analysis of statistical and graphical results suggests that the extended VPMM method was able to predict the flood wave

movement better than the SVM and WASVM models. A model complexity analysis was also conducted which suggests

that the two parameter-based extended VPMM method has less complexity than the three parameter-based SVM and

WASVM model. Further, the model selection criteria also give the highest values for VPMM in 7 out of 9 flood events. The

simulation of flood events suggested that both the approaches were able to capture the underlying physics and reproduced

the target value close to the observed hydrograph. However, the VPMM models are slightly more efficient and accurate,

than the SVM and WASVM model which are based only on the antecedent discharge data. The study captures the current

trend in the flood forecasting studies and showed the importance of both the approaches (physical and data-based mod-

eling). The analysis of the study suggested that these approaches complement each other and can be used in accurate yet

less computational intensive flood forecasting.
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1 Introduction

Accurate forecasting of discharge is extremely important in

flood management, reservoir management and hydropower

design. The accuracy in forecasting discharge depends on

the type of simulation model adopted, and a review of

literature shows that long-term and short-term discharge

forecasting models are being used extensively in various

water management problems such as flood control, drought

management, water supply utilities operations, irrigation

supply management and sustainable development of water

resources. In the last few decades, researchers have pro-

posed many models to improve the accuracy of discharge

forecasting. These models can be broadly classified as

physically based, conceptual and data-driven models. A

physically based model includes as much of small-scale

physics and natural heterogeneity as is computationally

possible by considering variables such as groundwater,

precipitation, evapotranspiration, initial soil moisture con-

tent and temperature [22]. These can be further classified as

hydraulic and hydrologic routing methods. The hydrologic

routing methods are widely used in the field practices since

early thirties, and they have been developed essentially to

overcome the tedious computations involved in the

hydraulic routing methods [33]. Among the many lumped

hydrologic routing methods, the Muskingum method intro-

duced by McCarthy [24] is well known in literature [10].
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The Muskingum method was studied by Ponce and Yev-

jevich [34] resulting in the development of variable

parameter Muskingum–Cunge (VPMC) method. However,

the VPMC method was criticized for the mass conservation

problem [31]. To overcome this problem, Todini [47]

revisited the original Muskingum–Cunge (MC) flood

routing approach and suggested that the error in mass

conservation occurs due to the use of time variant param-

eters. Later, Price [35] proposed a nonlinear Muskingum

method as an approximation of the one-dimensional Saint–

Venant equations and suggested a way out to include any

uniformly distributed time-dependent lateral inflow along

the river. Recently, Perumal and Price [30] proposed a fully

mass conservative approach to study the flood wave

propagation in channels (without lateral flow) named

variable parameter Muskingum method based on the Saint–

Venant equations. Although these methods successfully

captured the flood wave movements and also tackled the

problem of mass conservation, the consideration of lateral

flow along the river reach still was the cause for erroneous

river discharge prediction. A separate approach was sug-

gested by O’Donnell [27] to include lateral flow in the

Muskingum method assuming that the lateral flow has the

same form as the inflow hydrograph as pointed out by

Perumal et al. [32]. This concept was further studied by

Karahan et al. [17] using the approach of O’Donnell [27] to

incorporate lateral flow and proposed a nonlinear Musk-

ingum flood routing model. This three parameter-based

semiempirical Muskingum method has limitation about its

applicability to only those events which were similar to the

observed past events. To overcome this problem, Yadav

et al. [51] proposed an extended VPMM method consid-

ering uniformly distributed lateral flow along the river

reach. This study extended the approach of Perumal and

Price [30] and successfully captured the significant amount

of lateral flow due to intervening catchment rainfall.

Recently, Swain and Sahoo [43] also studied the fully mass

conservative VPMM model and extended it to exclusively

incorporate the spatially and temporally distributed non-

uniform lateral flow while routing the flood events for

compound river channel flows.

Although a physical method provides reasonable accu-

racy, their implementation and calibration typically present

various difficulties [25]. Moreover, in situations particu-

larly in developing countries where the data about the

processes to be modeled are limited, physically based

model cannot be built, or they are inadequate. A well-

calibrated conceptual model can also provide reasonable

simulation accuracy; however, their uses are limited,

because entire physical process in the hydrologic cycle is

mathematically formulated in the conceptual models. Thus,

they are composed of a large number of parameters making

the model very complicated and slow. This in turn leads to

problems of over parameterization [6] which may manifest

itself in large prediction uncertainty [48]. In the last few

decades, data-driven techniques capable of handling large

data sets have been adopted while dealing with water

resources problems. In forecasting of river discharge, data-

based hydrologic methods are gaining popularity because

they can be developed very rapidly with requirement of

minimal information [53]. Though they may lack the

ability to provide a physical interpretation and insight into

the catchment processes, they are nevertheless able to

forecast relatively accurate discharge values [2]. The lack

of extensive data and cost of collection coupled with

inaccessibility of sites compels one to select models based

on past recorded flow data while simulating river flow

variability [19, 38]. Further, data-driven models that

operate on an interrelationship between input–output data

only without capturing the complete dynamics of the sys-

tem may therefore be preferred in certain cases (e.g., in

contexts of limited data).

With the advent of computers and the availability of

high computational facilities, many researchers have

employed data-driven techniques while forecasting dis-

charge (e.g., [5, 13, 14, 18, 36, 39, 41]). Much research has

been carried out in the recent past on the use of artificial

neural networks (ANN) for discharge forecasting since it is

reliable and promising and plethora of literature is avail-

able with its applications. Study of hydrologic processes

using data-based models mainly depends on the time series

of the considered process. The length of the time series is

also important as it captures the short-term and long-term

trend of the process, which can also help in accurate sim-

ulation and prediction of the future events. The neural

network-based models were also used successfully for the

trend analysis of time series [21, 23]. Similarly, genetic

programing [20] is another data-based approach which has

been successfully applied to many studies in water

resources engineering problems. However, the most

notable one was the support vector machine (SVM), a

kernel-based technique based on the Vapnik–Chervonenkis

(VC) theory [49]. The main advantage of this relatively

new machine learning method is that it not only possesses

the strengths of ANN but is able to overcome the problems

associated with local minimum and network over fitting

[4]. Further, despite the flexibility and usefulness of data-

driven methods in modeling hydrologic processes, they

have some drawbacks with highly non-stationary responses

or seasonality [1, 7, 26, 46]. To handle such problems, a

method called wavelet analysis (WA) has been used in

various hydrologic studies. Sang [37] highlighted that the

understanding of hydrologic series can be improved from

wavelet analysis. Recent application of wavelet analysis in

hydrologic modeling [3, 16, 42, 50] suggests that the WA

approach provides a superior alternative to the data-driven
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models and can enhance the accuracy by developing the

more detailed input–output combinations. In light of the

above facts, an attempt has been made herein to assess the

abilities of the wavelet-based support vector machine to

predict the discharge in a river reach where the lateral flow

is very significant. Further, we also intend to compare the

two distinctively discharge prediction approaches to sug-

gest an accurate yet less complex discharge prediction

method for such a catchment conditions. The techniques

were experimented on a 24.2-km stretch of Neckar River

between Rottweil and Oberndorf.

2 Methodology

2.1 Variable parameter McCarthy–Muskingum
(VPMM)

The fully mass conservative VPMM was developed by

Perumal and Price [30]. After a decade of research, VPMM

is capable to conserve volume absolutely and also follow

the heuristic assumption of the prism and wedge storage

established by McCarthy [24] in the development of the

classical Muskingum method. The method fundamentally

makes use of a parallel approach followed by Perumal

[28, 29] in the development of the VPM routing method.

The VPMM method is developed from an approximation of

the momentum equation of the Saint–Venant equations.

This approximation is applied directly to the one-dimen-

sional continuity equation of the Saint–Venant equations,

leading to a fully conservative routing method which has

the same routing equation as the classical Muskingum

method proposed by McCarthy in [24]. The use of

hydraulic principle in the development of the VPMM

method allows the characterization of the considered

channel reach storage into prism and wedge storage which

complies with the heuristic assumption of McCarthy [24]

who developed the Muskingum method. The equation

derived in the VPMM method for the travel time and

weighting parameter is same as the classical Muskingum

method and based on the flow and channel characteristics.

The equations governing the one-dimensional unsteady

flow in channels and rivers are given below [30] as

oQ

ox
þ oA

ot
¼ 0 ð1Þ

Sf ¼ So �
oy

ox
� v

g

ov

ox
� 1

g

oy

ot
ð2Þ

Equations (1) and (2) represent the continuity and

momentum equation, respectively. The discharge at any

section of the routing reach using the VPMM method can

be obtained using the equation as [30] as

QM ¼ Qo;M 1 � 1

So

oy

ox
1 � 4

9
F2
M

P

B

dR

dy

� �2

M

" #( )1=2

ð3Þ

where t is the time; x is the distance along the channel; y is

the flow depth; v is the average cross-sectional velocity; A

is the cross-sectional area; Q represents the discharge; g is

the acceleration due to gravity; Sf is the frictional slope; So
is the bed slope;ðoy=oxÞ is the longitudinal gradient of

water profile; ðv=gÞðov=oxÞ is the convective acceleration

slope and ð1=gÞðov=otÞ is the local acceleration slope; PM ,

BM and RM , respectively, represent the wetted perimeter,

top width and hydraulic radius corresponding to flow depth

ym. The notation QM is the average discharge at the mid-

section of the reach at any time, Qo;M is the normal dis-

charge at the midsection corresponding to flow depth ym,

and FM is the Froude number.

The developed VPMM method was further modified to

account lateral flow in flood routing study using the similar

approach suggested by O’Donnell [27]. Though the fun-

damental principle remains same, lateral flow was incor-

porated in a distributed form throughout the river stretch

(Fig. 1). For the detailed explanation on the lateral flow

estimation approach, readers can refer to Yadav et al. [51].

Accordingly, the lateral flow hydrograph qL is assumed to

have the similar shape as the inflow hydrograph and it is

supplied uniformly along the river stretch at each time

interval. Hence, the original continuity equation in the

VPMM method is modified as

oQ

ox
þ oA

ot
¼ qL ð4Þ

where qL is the lateral flow per unit length of the channel.

The contribution of lateral flow in the river stretch is

assumed to be perpendicular to the channel reach; hence,

the channel flow receives no or very negligible momentum.

Accordingly, in the modified VPMM method the momen-

tum equation (Eq. 2) remains unaltered. The modified

continuity equation and the original momentum equation

l 

Inflow  
Hydrograph, I 

Outflow  
Hydrograph, Q 

A 

C 
B 

M 

Distribute  
lateral flow, qL

Fig. 1 Concept diagram of VPMM method considering distributed

lateral flow in river reach [51]

Neural Computing and Applications (2020) 32:2457–2470 2459

123



www.manaraa.com

were further solved to account the uniformly distributed

lateral flow and the approach arrived at following [51] as

Q
jþ1
iþ1 ¼ C1Q

jþ1
i þ C2Q

j
i þ C3Q

j
iþ1 þ C4qLavg ð5Þ

The coefficients C1, C2, C3, C4 and qLavg are expressed

as

C1 ¼ Dt � 2Kjþ1hjþ1

Dt þ 2Kjþ1 1 � hjþ1
� �

C2 ¼ Dt þ 2K jh j

Dt þ 2Kjþ1 1 � hjþ1
� �

C3 ¼
�Dt þ 2K j 1 � hjþ1

� �
Dt þ 2Kjþ1 1 � hjþ1

� �

C4 ¼ 2KDtDx

Dt þ 2Kjþ1 1 � hjþ1
� �

qLavg ¼ qL;jþ1 þ qL;j

2

Considering the shape of lateral flow hydrograph as

same as the inflow hydrograph, the lateral flow rate qL
joining to the river stretch (discharge per unit length of the

channel) is obtained [51] as

qL ¼ IPN
i¼1 IDt

� VL

L
ð6Þ

where I is the inflow discharge at any time; L is the length

of the river reach in meter; VL is the volume of lateral flow.

To calculate the discharge values at the downstream

location, the VPMM method requires the following data—

Manning’s roughness value, bed slope, river width (meter),

side slope and cross-sectional shape. The method also

requires river discharge data of the upstream gauging sta-

tion and rainfall data to calculate the lateral flow of the

intervening catchment. As the VPMM method is a fully

mass conservative, physically based method, it does not

require any calibration. The precipitation and discharge

data of year 2002 were used in simulation of the discharge

at the downstream location.

2.2 Support vector machine

Vapnik [49] proposed a kernel-based algorithm as support

vector machine (SVM) which has a function form like

physical models; however, the level of complexity is to be

decided by the data used to train the model. The method

was developed using the similar principle like ANN,

however, by using a novel way to approximate various

functions [i.e., linear (LN), polynomial (PL), radial basis

function (RBF) and sigmoid (SIG)] using the method of

structural risk minimization (opposite to the empirical risk

minimization). A kernel function is used to transform the

data into higher dimensional feature space. The SRM

principle allows the method to have a good generalization

ability for the unseen data. Let fðx1; y1Þ. . .; . . .; ðxn; ynÞg be

assumed to be the given training data sets, where xi � Rn

represents the input sample space and yi � Rn for i ¼
1; . . .; l denotes respective target output, elements in the

training data set represented by l. Error tolerance level is

fixed by a value of e(errors\ e). The linear regression in

SVM is estimated by solving Eq. (7) as

Minimize
1

2
wk k2þC

Xn
i¼0

nþ n�ð Þ ð7Þ

Subject to

yi � w; xið Þ � b� ei þ n
w; xið Þ þ b� yi � ei þ n�

nin
�
i � 0; i ¼ 1; . . .; l

8<
: w denotes the

normal vector, b is a bias, C represents a regularization

constant, e is the error tolerance level of the function, and

the n, n� are slack variables.

The support vector machine has variety of kernel

function (mathematical function) and its selection based on

the problem at hand, which in turn has a direct impact on

the accuracy of the model [56]. Various studies suggest that

the RBF has higher generalization ability and produce

more accurate results than the other kernel types

[15, 45, 50, 55]. A study by Tehrany et al. [44] suggested

that RBF may produce less accurate results in case of

longer range extrapolation. However, RBF as a kernel

function for SVM used by many researchers in the past

[11, 42, 50, 52, 54, 57] and has been found to be suit-

able for simulation and prediction studies. RBF is defined

as

K Xi;Xj

� �
¼ exp �c Xi � Xj

�� ��2
� �

ð8Þ

where Xi and Xj are vectors in the input space, such as the

vectors of features computed from training and testing. c is

defined by, c ¼ � 1
2r2 for which r is the Gaussian noise

level of standard deviation.

The output of the SVM is critically dependent on the

parameters such as regularization constant (C) insensitive

loss function ðeÞ, and parameter of radial basis function ðcÞ.
Trial and error procedure was used in the present study to

optimize these parameters based on the RMSE value. The

trial continues by using different combinations of all three

parameters till the value of RMSE was minimized. Once

the optimal parameters are obtained, the methods require

time series of upstream and downstream gauging locations

to simulate the discharge values at the downstream loca-

tion. The effect of lateral flow on the downstream dis-

charge values is automatically considered in the method as

the lateral flow calculation is based on the input and output

discharge data. The time series data from the year 1999 to
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2001 were used for the training, while the data from year

2002 were used for the testing.

2.3 Wavelet analysis

A wavelet analysis is based on Fourier analysis and was

developed to analyze stationary and non-stationary data.

Wavelet decomposition is a technique used in case of non-

periodic and transient signals to extract the relevant time–

frequency information by disintegrating the data into low-

frequency and high-frequency components. Wavelet

decomposition breaks the signal into low- and high-fre-

quency components and utilizes the information hidden in

the original signal. The lower frequency components (ap-

proximation) are obtained using low pass filter and capture

the rapidly changing details of the signal. The higher fre-

quency components (details) are obtained using high pass

filter to encompass the slowly changing features of the

signals. In this study, discrete wavelet transform (DWT)

was used and the discharge time series was decomposed

into four resolution interval. Thus, some features of the

subseries can be seen more clearly than the original signal

series. Though DWT is able to decompose the time series

in many interval, it is important to note that higher number

of resolution may also slow down the computational speed.

For each component, a separate SVM model needs to be

developed and the decomposed component may be given

as the input for SVM. Later, the output of the all the

developed SVM (i.e., four in this case) will be summed to

get the final output in the form of recomposed time series.

There are two basic forms of wavelet analysis, contin-

uous wavelet transform (CWT) and discrete wavelet

transform (DWT). The continuous wavelet transform

(CWT) of a signal xðtÞ is defined as follows [16]:

CWTw
x s; sð Þ ¼ 1ffiffiffiffiffi

sj j
p

Zþ1

�1

x tð Þw� t � s
s

� �
dt ð9Þ

where w tð Þ is the mother wavelet function;s represents the

scale parameter, s is the translation parameter.The discrete

wavelet transform (DWT) is defined as follows:

wm;n tð Þ ¼ a�m=2w
t � ns0a

m

am

� �
ð10Þ

m and n is the resolution level and position which controls

the scale and time; t is the time; a is a specified fixed

dilation step greater than 1; s0 is the location parameter that

must be greater than zero. The term a�m=2 in the above

equation normalizes the functions.

The two forms of wavelet have been used in many

studies; however, it was observed that the CWT is com-

putationally costly and requires large number of data. On

the other hand, the development and application of DWT is

much simpler and easy to use [1, 16]. Therefore, DWT has

been used in this study where a father wavelet function is

used for the extraction of low-frequency components,

while the high-frequency component is extracted by using

a complementary of the father wavelet, a mother wavelet

function. The decomposition of the data series is repre-

sented by the approximation series Am and the detail series

Dm. Later, both the approximation and detail series were

recomposed to get the final output of the model.

2.4 Evaluation criteria

The VPMM method was originally developed by Perumal

and Price [30] and further the extended version considering

the lateral flow was evaluated by Yadav et al. [51]. In the

flood forecasting study, value of flood peak and its time of

arrival is very important; hence, in this study three

important evaluation criteria which are error in peak dis-

charge (Qer), error in time to peak (tQe) and error in volume

(EVOL) are adopted. The criteria for error in volume have

different definition than the one proposed by Perumal and

Price [30] as in their method the objective was to assess the

error in mass conservation. However, in this study the

lateral inflow from the intervening catchment is very sig-

nificant; hence, the mass reproduction at the downstream

location is bound to have higher value than the upstream

location. Therefore, this study evaluated the volume

reproduction ability of the selected methods based on the

observed discharge at the downstream location. Further,

the performance of VPMM, SVM and WASVM was also

evaluated using the statistical indicators like root mean

square error (RMSE), normalized mean square error

(NMSE) and coefficient of determination (R2). The afore-

mentioned statistical indicator gives the interpretation

about the overall reproduction ability of the selected

models and may not provide the information that how the

model behaved throughout the flood event. Therefore,

another evaluation criteria called absolute average relative

error (AARE) were adopted to assess the model perfor-

mance at each discharge ordinate. Furthermore, the per-

formance of the selected methods was also evaluated using

graphical analysis where the closeness with which the

proposed method reproduces the benchmark solution,

including the closeness of shape and size of the hydro-

graph, can be measured using the Nash–Sutcliffe (NSE)

efficiency criterion. The definition of RMSE, NMSE, NSE

and R2 can be found easily in the literature; however, the

definition for some of the specific performance measures is

given as follows:Error in peak discharge (Qer)
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Qer ¼
Qs

Qo

� 1

� �
� 100 ð11Þ

Relative error in time to peak (tQe)

tQe ¼ tQs � tQo ð12Þ

Error in volume (EVOL)

EVOL ¼
XN
i¼1

Qsi

,XN
i¼1

Qoi

( )
� 1

" #
� 100 ð13Þ

Absolute average relative error (AARE)

AARE ¼ 1

N

XN
i¼1

Qoi � Qsi

Qsi










� 100 ð14Þ

where Qer represents the percentage error in simulated

peak discharge; Qs is the simulated peak discharge of the

flood event at the downstream location (m3/s); Qo is the

observed peak discharge of the flood event at the down-

stream location (m3/s); tQe is the relative error in time to

peak of the simulated flood event (h); tQs time to peak of

the simulated flood event (h); tQo time to peak of the

observed flood event (h); EVOL is the error in volume is

simulated flood event (%);Qsi is the ith ordinate of the

simulated flood event (m3/s); Qoi is the ith ordinate of the

observed flood event (m3/s) and N is the total number of

ordinates in the flood event.

2.5 Evaluation of model complexity

The level of complexity of a specific model is tested using

Akaike information criterion (AIC) and model selection

criteria (MSC). The most appropriate model based on the

model complexities is the one with the smallest values of

the AIC and largest value of MSC. The performance

measures are also defined as;

AIC ¼ N ln
XN
i¼1

ðQoi � QsiÞ2

" #
þ 2Np ð15Þ

MSC ¼ ln

PN
i¼1 ðQoi � QsÞPN
i¼1 ðQoi � QsiÞ

" #
� 2Np

N
ð16Þ

where Qs represents the average simulated discharge and

Np represents the number of model parameters.

3 Study area and data

The research work as a part of this study was mainly

performed on a part of the Neckar River basin (Fig. 2).

This region is situated in the South- Western part of Ger-

many in the state of Baden Württemberg. The river in the

catchment is unaffected by large hydropower generation

plants and other such water management structures or

navigational reasons, which are the most common reasons

influencing the runoff characteristics of the catchment area.

The study area of this research is characterized by strong

differences in altitude between the foothills of the Black

Forest in the west, the valley of the Neckar in the center

and once again the steep ascent to the Schwäbische Alb in

the east. The catchment consists of lots of narrow valleys.

There is a wide variety of vegetation in the study catch-

ment. In the western part of the catchment, the soil is acidic

and poor in minerals which support only Spruce, fir and

beech trees. The same forest is also found in the sandy soil

of Keuper. The pasture, meadows, fruits, vines, ash tress,

elm and lime trees are also found in the smaller pockets.

The study was conducted between the two initial obser-

vation stations Rottweil and Oberndorf on the Neckar

River. Distance between two stations is 24.2 km. The

intermediate drainage area between two stations is

235 km2 which is around 34% of the total drainage area of

Oberndorf gauging station. The hourly amounts of pre-

cipitation used in the VPMM for the period from 1999 to

2002 are obtained from three precipitation stations which

are distributed in and around the catchment area. The data-

based modeling (SVM and WASVM) is based only on the

discharge time series from 1999 to 2002 (Fig. 3) which was

provided by the University of Stuttgart, Germany. The

description of the study area is partly based on the

description of Das [12] and CC-HYDRO [8]. The discharge

time series from 1999 to 2001 was used for the training,

and 9 flood events from the year 2002 are selected for the

comparative analysis of the selected methods. The event

selection was completely random but keeping in mind that

the peak discharge value should be high and lateral flow

Fig. 2 Neckar catchment (IWS, Stuttgart)
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contribution must be more than 10% in all events. The

parameters for the application of extended VPMM were

taken from the study of Yadav et al. [51].

4 Results and discussion

4.1 Flood routing using VPMM, SVM
and WASVM

The extended VPMM method and its parameters were

obtained from the study conducted by Yadav et al. [51] for

the same river stretch. The VPMM method under consid-

eration has only two parameters K and h which depend on

the cross-sectional information and the flow characteristics.

The routing reach information such as bed slope and

Manning’s roughness value was obtained from the study

reports of the Neckar River catchment, but the bed width

and side slope of the cross section (Table 1) of the channel

reach is optimized by the ROPE algorithm [40, 51]. To

avoid the influence of lateral inflow on the parameter

optimization process, the flood event with a minimum

lateral flow among the 9 events is considered for the

analysis. The data-based models, namely SVM and

WASVM, were developed using LIBSVM toolbox [9] to

predict the discharge at the downstream location. The

radial basis function was adopted as kernel function for

SVM, and its parameters C and c were obtained using a

trial and error procedure where the trial continues till the

value of RMSE was minimized. Later, the SVM model was

suitability coupled with wavelet analysis (WA) which

decomposes the input discharge time series using DWT

into approximation and detailed time series (Fig. 4). The

parameters for SVM and WASVM have been presented in

Table 2. After the model calibration (VPMM) or training

(SVM, WASVM), they were used to predict the discharge

hydrograph of 9 flood events of the year 2002.

Table 3 presents the statistical analysis of the simulated

hydrograph obtained by VPMM, SVM and WASVM. The

VPMM reproduced 7 out of 9 flood events with highest

accuracy, where the error measures like NMSE, RMSE

values range between 0.018 to 0.083 and 1.471 (m3/s) to

4.301 (m3/s), respectively. Similarly, the values for R2 and

NSE range between 0.968 to 0.997 and 0.872 to 0.982,

respectively. In case of SVM, the values obtained for

NMSE and RMSE were significantly high for most of the

flood events and ranges between 0.046 to 0.176 and 2.932

(m3/s) to 5.918 (m3/s), respectively. The fitness criteria (R2

and NSE) also follow the similar trend like error measures

and range between 0.831 to 0.966 and 0.822 to 0.954,

respectively. The inclusion of wavelet analysis has defi-

nitely improved the accuracy of SVM and outperforms it in

all flood events except 1, 3 and 9. Though it is evident from

the statistical analysis that the VPMM method shows

superiority over SVM and WASVM, the reproduction of

the downstream hydrographs for all the flood events by the

data-based models is very close to the observed hydro-

graphs. This argument is well supported by the graphical

representation of the observed and simulated hydrographs

by VPMM, SVM and WASVM (Figs. 5, 6, 7, 8, 9, 10, 11,

12, 13). It is also evident from these figures that the

absolute average relative error (AARE) of VPMM is very

low. The AARE of SVM and WASVM is significantly

higher than the VPMM; however, WASVM shows rela-

tively less error than the SVM. These figures reveal that,

under significant lateral flow conditions, the rising limb,

recession limb and the peaks of the event-based flood

hydrographs are all most well-reproduced by the VPMM,

SVM and WASVM model.

Further analysis of the results indicates that the VPMM

model works well in both the cases of single or multi-peak

peak flood events; however, data-based models simulate

the multi-peak flood events (events 1 and 8) better than

VPMM. The reason for such outcome can be attributed to

the fact that the data-based model performance primarily

depends on the data length. In case of flood event 8, the

discharge time series length is around 800 h with multiple

peaks, which allowed the model to learn such occurrence

Fig. 3 Time series at Rottweil (upstream) and Oberndorf (down-

stream) gauging stations

Table 1 Parameters for the development of VPMM method

Parameter Value

Manning’s roughness 0.035

Bed slope 0.0034

River width (m) 8.417

Side slope 1.035

Cross-sectional shape Trapezoidal
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properly. The study suggests that, if the data-based models

are fed with sufficient length of discharge time series data

which encompass the variability in nature, they can simu-

late the discharge process with reasonable accuracy. On the

other hand, the reduction in accuracy of VPMM for these

flood events derives from the uncertainty in estimating the

lateral flow which, mainly depends on the initial soil

moisture conditions. The spatial and temporal variability of

soil moisture content can have significant impact on the

lateral flow estimation which in turn will reflect in the

simulation accuracy of the VPMM.

Further, considered methods in this study were also

evaluated using the original criteria used for the develop-

ment of VPMM. The percentage error in the peak discharge

(Qer in %), the error in the time-to-peak discharge (tQe in h)

and the percentage error in the volume (EVOL in %) for all

the 9 flood events are depicted in Figs. 14, 15 and 16. It is

evident from Fig. 14 that the VPMM method predicts most

of the peak values (5 out of 9) within 	 10% error and just

2 above the 20% error. However, in case of SVM and

WASVM Qer is well above the 	 10% range for most of

the flood events, which suggest that the data-based models

may require more training to predict such high discharge

Fig. 4 Decomposed time series of the for the period of 1999–2000

Table 2 Optimal SVM and WASVM parameters for various

decomposition series

Model Decomposed series Best C Best c
SVM 3.104 0.0412

WASVM Approximation series 42 0.0611

D1 series 3 0.0412

D2 series 3 0.0712

D3 series 7 0.0912

D4 series 9 0.0812

Table 3 Performance of VPMM, SVM and WASVM during the

discharge prediction at the Oberndorf gauging station

Flood event Method NMSE R2 RMSE (m3/s) NSE

1 VPMM 0.028 0.984 3.421 0.948

SVM 0.049 0.966 3.316 0.951

WASVM 0.052 0.962 3.434 0.948

2 VPMM 0.083 0.980 4.197 0.916

SVM 0.130 0.922 5.244 0.869

WASVM 0.118 0.928 5.009 0.881

3 VPMM 0.018 0.987 2.195 0.982

SVM 0.129 0.948 5.918 0.870

WASVM 0.145 0.943 6.261 0.855

4 VPMM 0.020 0.981 1.471 0.979

SVM 0.176 0.831 4.356 0.822

WASVM 0.175 0.835 4.345 0.823

5 VPMM 0.071 0.968 4.301 0.928

SVM 0.106 0.919 5.254 0.893

WASVM 0.099 0.926 5.061 0.901

6 VPMM 0.030 0.987 2.415 0.970

SVM 0.081 0.951 4.005 0.919

WASVM 0.069 0.958 3.694 0.931

7 VPMM 0.035 0.970 3.579 0.965

SVM 0.046 0.954 4.106 0.954

WASVM 0.046 0.954 4.093 0.954

8 VPMM 0.128 0.976 4.545 0.872

SVM 0.053 0.953 2.932 0.947

WASVM 0.053 0.955 2.920 0.947

9 VPMM 0.015 0.997 1.469 0.985

SVM 0.062 0.964 3.011 0.938

WASVM 0.070 0.955 3.191 0.929
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Fig. 5 Routed hydrograph and AARE for flood event 1 using VPMM, SVM and WASVM

Fig. 6 Routed hydrograph and AARE for flood event 2 using VPMM, SVM and WASVM

Fig. 7 Routed hydrograph and AARE for flood event 3 using VPMM, SVM and WASVM
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Fig. 8 Routed hydrograph and AARE for flood event 4 using VPMM, SVM and WASVM

Fig. 9 Routed hydrograph and AARE for flood event 5 using VPMM, SVM and WASVM

Fig. 10 Routed hydrograph and AARE for flood event 6 using VPMM, SVM and WASVM
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values which comes rarely in a discharge time series but

extremely important in case of flood forecasting. Similarly,

Fig. 15 presents the error in time-to-peak discharge and

VPMM predicts the peak value very close to its time of

arrival in observed flood event. In fact, 7 out of 9 peaks

have error 1 h or less, and just two with the error range of

	 4 (h). SVM also produced most of the peak discharge

values with 	2 (h) error; however, WASVM shows the

higher error variation ranging from - 2 to ? 2 (h). Fur-

ther, the percentage error in the volume (EVOL in %) is

depicted in Fig. 16, which shows that the VPMM method

despite receiving significant amount of lateral flow from

the intervening catchment could reproduce the downstream

hydrograph with just 	 10% error in volume for 8 out of 9

flood events. Though the error in the volume for SVM and

WASVM is also within the same range as it was for the

VPMM, some flood events showed higher error.

4.2 Level of complexity in VPMM, SVM
and WASVM

The method under consideration was also evaluated to

assess the level of complexity while designing the model

for discharge prediction. Table 4 presents the model

complexity analysis of VPMM, SVM and WASVM based

on the number of parameter each model requires to be

tuned while designing the model for a specific application.

The VPMM method has only two parameters that is K and

h, while the SVM has three parameters, namely regular-

ization constant (C), insensitive loss function (e) and

Fig. 11 Routed hydrograph and AARE for flood event 7 using VPMM, SVM and WASVM

Fig. 12 Routed hydrograph and AARE for flood event 8 using VPMM, SVM and WASVM
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parameter of radial basis function (c). It is evident from the

table that the Akaike information criterion (AIC) is lowest

while using VPMM, in comparison with SVM and

WASVM for most of the flood events. Similarly, the model

selection criteria (MSC) value is highest for 8 out of 9 flood

events when VPMM is used; however, it decreased sig-

nificantly for SVM and WASVM.

5 Conclusion

In this study, two approaches were used to predict the

downstream discharge of Neckar River in which VPMM is

a physically based method and the SVM is data-based

method. Further, wavelet analysis was also used to develop

a hybrid WASVM model. The predictability of the modles

Fig. 13 Routed hydrograph and AARE for flood event 9 using VPMM, SVM and WASVM

Fig. 14 Error in peak discharge prediction while using VPMM, SVM

and WASVM

Fig. 15 Error in time-to-peak discharge prediction while using

VPMM, SVM and WASVM

Fig. 16 Variation of error in volume while using VPMM, SVM and

WASVM
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were tested using 9 flood events from the year 2002 which

is characterized of having significant lateral flow joining

from the intervening catchment, which in general is diffi-

cult to model due to its spatial and temporal variability.

Based on the analysis of statistical and graphical results, it

is inferred that the extended physically based variable

parameter Muskingum routing method (VPMM) is more

robust and reliable than the data-based models like SVM

and WASVM, when used to predict the discharge in a river

reach with significant lateral flow joining between the

upstream and downstream gauging stations. However, it is

also evident from the analysis that the data-based models

successfully captured the flood wave moment phenomenon

and were able to map the process even with lateral flow,

hence reproduced the discharge hydrograph close to the

observed hydrograph at the downstream location. Further,

based on the Akaike information criterion (AIC) and model

selection criteria (MSC), it can be concluded that the

VPMM model is relatively less complex than the SVM and

WASVM. Lastly, it can be summarized that the physically

based extended VPMM method can predict the discharge

hydrograph better than the data-based mode; however, in

case of multi-peak flood events with sufficient discharge

data, the latter performed better than VPMM method.
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